Complete moment convergence of extended negatively dependent random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables

The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).

متن کامل

Equivalent conditions of complete moment convergence for extended negatively dependent random variables

In this paper, we study the equivalent conditions of complete moment convergence for sequences of identically distributed extended negatively dependent random variables. As a result, we extend and generalize some results of complete moment convergence obtained by Chow (Bull. Inst. Math. Acad. Sin. 16:177-201, 1988) and Li and Spătaru (J. Theor. Probab. 18:933-947, 2005) from the i.i.d. case to ...

متن کامل

Complete convergence for negatively dependent random variables

Let {Xn, n ≥ 1} be a sequence of independent and identically random variables. In 1947 Hsu and Rabbins proved that if E[X] = 0 and E[X2] < ∞, then 1 n ∑n k=1Xk converges to 0 completely. Recently, the strong convergence of weighted sums for the case of independent random variables has been discussed by Wu (1999), Hu and et. (2000, 2003) proved the complete convergence theorem for arrays of inde...

متن کامل

Complete Convergence for Negatively Dependent Random Variables

Let {Xn, n ≥ 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5] proved that if E(X) = 0 and E(X) < ∞, then the sequence 1 n ∑n i=1 Xi converges to 0 completely. (i.e., the series ∑∞ n=1 P [|Sn| > nε] < ∞, converges for every ε > 0). Now let {Xn, n ≥ 1} be a sequence of negatively dependent real random variables. In this paper, we proved the complete convergence of the sequen...

متن کامل

Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation

In this paper, we study the complete convergence and complete moment convergence for weighted sums of extended negatively dependent (END) random variables under sub-linear expectations space with the condition of [Formula: see text], further [Formula: see text], [Formula: see text] ([Formula: see text] is a slow varying and monotone nondecreasing function). As an application, the Baum-Katz type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2020

ISSN: 1029-242X

DOI: 10.1186/s13660-020-02416-7